868 research outputs found

    Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2

    Get PDF
    We compute the mass function of galactic dark matter halos for different values of the Warm Dark Matter (WDM) particle mass m_X and compare it with the abundance of ultra-faint galaxies derived from the deepest UV luminosity function available so far at redshift z~2. The magnitude limit M_UV=-13 reached by such observations allows us to probe the WDM mass functions down to scales close to or smaller than the half-mass mode mass scale ~10^9 M_sun. This allowed for an efficient discrimination among predictions for different m_X which turn out to be independent of the star formation efficiency adopted to associate the observed UV luminosities of galaxies to the corresponding dark matter masses. Adopting a conservative approach to take into account the existing theoretical uncertainties in the galaxy halo mass function, we derive a robust limit m_X>1.8 keV for the mass of thermal relic WDM particles when comparing with the measured abundance of the faintest galaxies, while m_X>1.5 keV is obtained when we compare with the Schechter fit to the observed luminosity function. The corresponding lower limit for sterile neutrinos depends on the modeling of the production mechanism; for instance m_sterile > 4 keV holds for the Shi-Fuller mechanism. We discuss the impact of observational uncertainties on the above bound on m_X. As a baseline for comparison with forthcoming observations from the HST Frontier Field, we provide predictions for the abundance of faint galaxies with M_UV=-13 for different values of m_X and of the star formation efficiency, valid up to z~4.Comment: 14 pages, 3 figures. Accepted for publication in The Astrophysical Journa

    Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios

    Get PDF
    We report the discovery of 11 very faint (r< 23), low surface brightness ({\mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo cluster, obtained by the prime focus cameras (LBC) at the Large Binocular Telescope (LBT). These extend our previous sample to reach a total number of 27 galaxies in a field of just of 0.17 deg^2 located at a median distance of 390 kpc from the cluster center. Their association with the Virgo cluster is supported by their separate position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. For a significant fraction (26\%) of the sample the association to the cluster is confirmed by spectroscopic follow-up. We show that the mere abundance of satellite galaxies corresponding to our observed number in the target field provides extremely tight constraints on Dark Matter models with suppressed power spectrum compared to the Cold Dark Matter case, independently of the galaxy luminosity distribution. In particular, requiring the observed number of satellite galaxies not to exceed the predicted abundance of Dark Matter sub-halos yields a limit m_X >3 keV at 1-{\sigma} and m_X > 2.3 keV at 2-{\sigma} confidence level for the mass of thermal Warm Dark Matter particles. Such a limit is competitive with other limits set by the abundance of ultra-faint satellite galaxies in the Milky Way, is completely independent of baryon physics involved in galaxy formation, and has the potentiality for appreciable improvements with next observations. We extend our analysis to Dark Matter models based on sterile neutrinos, showing that our observations set tight constraints on the combination of sterile neutrino mass m_{\nu} and mixing parameter sin^2(2{\theta}). We discuss the robustness of our results with respect to systematics.Comment: Accepted for publication in Astronomy & Astrophysic

    A high space density of L* Active Galactic Nuclei at z~4 in the COSMOS field

    Get PDF
    Identifying the source population of ionizing radiation, responsible for the reionization of the universe, is currently a hotly debated subject with conflicting results. Studies of faint, high-redshift star-forming galaxies, in most cases, fail to detect enough escaping ionizing radiation to sustain the process. Recently, the capacity of bright quasi-stellar objects to ionize their surrounding medium has been confirmed also for faint active galactic nuclei (AGNs), which were found to display an escaping fraction of ~74% at z~4. Such levels of escaping radiation could sustain the required UV background, given the number density of faint AGNs is adequate. Thus, it is mandatory to accurately measure the luminosity function of faint AGNs (L~L*) in the same redshift range. For this reason we have conducted a spectroscopic survey, using the wide field spectrograph IMACS at the 6.5m Baade Telescope, to determine the nature of our sample of faint AGN candidates in the COSMOS field. This sample was assembled using photometric redshifts, color, and X-ray information. We ended up with 16 spectroscopically confirmed AGNs at 3.6<z<4.2 down to a magnitude of iAB_{AB}=23.0 for an area of 1.73 deg2^{2}. This leads to an AGN space density of ~1.6×10−6Mpc−3\times10^{-6} Mpc^{-3} (corrected) at z~4 for an absolute magnitude of M1450_{1450}=-23.5. This is higher than previous measurements and seems to indicate that AGNs could make a substantial contribution to the ionizing background at z~4. Assuming that AGN physical parameters remain unchanged at higher redshifts and fainter luminosities, these sources could be regarded as the main drivers of cosmic reionization.Comment: 10 pages, 3 figures, accepted for publication by Ap

    The detection of ultra-faint low surface brightness dwarf galaxies in the Virgo Cluster: a Probe of Dark Matter and Baryonic Physics

    Get PDF
    We have discovered 11 ultra-faint (r≲22.1r\lesssim 22.1) low surface brightness (LSB, central surface brightness 23≲μr≲2623\lesssim \mu_r\lesssim 26) dwarf galaxy candidates in one deep Virgo field of just 576576 arcmin2^2 obtained by the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT). Their association with the Virgo cluster is supported by their distinct position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. They have typical absolute magnitudes and scale sizes, if at the distance of Virgo, in the range −13≲Mr≲−9-13\lesssim M_r\lesssim -9 and 250≲rs≲850250\lesssim r_s\lesssim 850 pc, respectively. Their colors are consistent with a gradually declining star formation history with a specific star formation rate of the order of 10−1110^{-11} yr−1^{-1}, i.e. 10 times lower than that of main sequence star forming galaxies. They are older than the cluster formation age and appear regular in morphology. They represent the faintest extremes of the population of low luminosity LSB dwarfs that has been recently detected in wider surveys of the Virgo cluster. Thanks to the depth of our observations we are able to extend the Virgo luminosity function down to Mr∼−9.3M_r\sim -9.3 (corresponding to total masses M∼107M\sim 10^7 M⊙_{\odot}), finding an average faint-end slope α≃−1.4\alpha\simeq -1.4. This relatively steep slope puts interesting constraints on the nature of the Dark Matter and in particular on warm Dark Matter (WDM) often invoked to solve the overprediction of the dwarf number density by the standard CDM scenario. We derive a lower limit on the WDM particle mass >1.5>1.5 keV.Comment: accepted for publication in ApJ, 13 pages, 6 figure
    • …
    corecore